Pre-Lab Exercises #4 — Due: Mar. 1, 1995

Prob. 1 Consider the bandpass filter represented by the difference equation

\[y(n) = -0.25 y(n-4) + x(n) - x(n-2) \]

where \(x(n) \) is the input and \(y(n) \) the output of the filter.

1. Find the transfer function \(H(z) \) of the filter.
2. Locate in the z-plane the poles and zeros of the filter. Use this information to explain the reason this is a bandpass filter.
3. What are the values of the magnitude response at \(\omega = 0, \pi \)?

Prob. 2 You wish to use the FFT to calculate the frequency response of an IIR filter with transfer function

\[H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}} \]

and \(N \geq M \). Explain how to do it.

Prob. 3 Given the following transfer functions

\[H_1(z) = \frac{z}{z - 0.9} \]
\[H_2(z) = \frac{z}{z + 0.9} \]
\[H_3(z) = \frac{z^2}{z^2 - 0.9z + 0.81} \]
\[H_4(z) = \frac{z^2 + 1}{z^2 + 0.81} \]

Locate the poles and zeros of each transfer function and from that information determine the type of filter and carefully sketch the magnitude responses.

Prob. 4 Give the transfer function of a double bandpass IIR filter that blocks the DC and high frequency (\(\omega = \pi \)) components of the input, has very sharp peaks at \(\omega_1 = \pm \pi/3 \) and \(\omega_2 = \pm 2\pi/3 \), and is stable.

Prob. 5 The frequency response of a filter is

\[H(e^{j\omega}) = 2e^{-j2\omega} \quad \pi/3 \leq |\omega| \leq 2\pi/3 \]
\[0 \quad \text{otherwise in } (-\pi, \pi) \]

1. What type of filter is this? Is this a real or an ideal filter?
2. Determine the steady state response of the above filter when the input is

\[x(n) = 2 + 4.5 \cos(\pi n/4) + 9 \cos(3\pi n/8) \]